Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Biomolecules ; 13(5)2023 05 15.
Article in English | MEDLINE | ID: covidwho-20232245

ABSTRACT

Plant cells release tiny membranous vesicles called extracellular vesicles (EVs), which are rich in lipids, proteins, nucleic acids, and pharmacologically active compounds. These plant-derived EVs (PDEVs) are safe and easily extractable and have been shown to have therapeutic effects against inflammation, cancer, bacteria, and aging. They have shown promise in preventing or treating colitis, cancer, alcoholic liver disease, and even COVID-19. PDEVs can also be used as natural carriers for small-molecule drugs and nucleic acids through various administration routes such as oral, transdermal, or injection. The unique advantages of PDEVs make them highly competitive in clinical applications and preventive healthcare products in the future. This review covers the latest methods for isolating and characterizing PDEVs, their applications in disease prevention and treatment, and their potential as a new drug carrier, with special attention to their commercial viability and toxicological profile, as the future of nanomedicine therapeutics. This review champions the formation of a new task force specializing in PDEVs to address a global need for rigor and standardization in PDEV research.


Subject(s)
COVID-19 , Extracellular Vesicles , Neoplasms , Humans , COVID-19/metabolism , Extracellular Vesicles/metabolism , Drug Delivery Systems/methods , Drug Carriers/metabolism , Neoplasms/metabolism
2.
ACS Nano ; 17(10): 8935-8965, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2320344

ABSTRACT

Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.


Subject(s)
COVID-19 , Neoplasms , Male , Humans , Nitric Oxide/therapeutic use , Neoplasms/therapy , Drug Carriers/therapeutic use , Nitric Oxide Donors
3.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2289102

ABSTRACT

Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.


Subject(s)
Chitosan , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Delivery Systems , Drug Carriers , Polymers
4.
Dalton Trans ; 52(21): 7031-7047, 2023 May 30.
Article in English | MEDLINE | ID: covidwho-2261893

ABSTRACT

Tris(2-aminoethyl)amine (tren) coordinates to a Zn(II) ion to form the [Zn(tren)]2+ cation that accepts a monodentate favipiravir (FAV) anion. The results of this work show that the FAV anion is capable of binding to the [Zn(tren)]2+ cation through either a nitrogen or an oxygen atom (N/O-coordination). The energy decomposition analysis shows that, interestingly, both the strength and nature of the bonds between the [Zn(tren)]2+ cation and the N/O-coordinated FAV anion are almost the same. X-ray crystal structure determinations confirmed the existence of two types of cations in the solid state, [Zn(tren)(N-FAV)]+ and [Zn(tren)(O-FAV)]+. The NMR data, in a DMSO solution, were consistent with either the N-coordinated or the O-coordinated complex, but not a mixture of the two linkage isomers. The theoretical data indicated that the [Zn(tren)(N-FAV)]+ and [Zn(tren)(O-FAV)]+ cations have very similar stability in the gas phase, and in H2O, CH3OH, and DMSO solutions, and can also easily convert from one linkage isomer to the other. The experimental and theoretical data showed that, upon protonation of the above cations under acidic conditions (pH ≈ 3 to 5.5), the drug FAV will be easily released and replaced by a Cl- anion, or an H2O molecule, which will coordinate to the zinc atom showing the potential of [Zn(tren)]2+ as a safe drug vehicle. Molecular docking studies using two well-known molecular docking packages show the relatively strong binding interactions of the [Zn(tren)(N-FAV)]+ and [Zn(tren)(O-FAV)]+ cations with DNA and viral protein macromolecules.


Subject(s)
Amines , Zinc , Zinc/chemistry , Water/chemistry , Molecular Docking Simulation , Drug Carriers , Dimethyl Sulfoxide
5.
ACS Nano ; 17(7): 6165-6177, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2284418

ABSTRACT

Nanoparticles as drug delivery carriers have benefited diseases, including cancer, since the 1990s, and more recently, their promise to quickly and efficiently be mobilized to fight against global diseases such as in the COVID-19 pandemic have been proven. Despite these success stories, there are limited nanomedicine efforts for chronic kidney diseases (CKDs), which affect 844 million people worldwide and can be linked to a variety of genetic kidney diseases. In this Perspective, we provide a brief overview of the clinical status of genetic kidney diseases, background on kidney physiology and a summary of nanoparticle design that enable kidney access and targeting, and emerging technological strategies that can be applied for genetic kidney diseases, including rare and congenital kidney diseases. Finally, we conclude by discussing gaps in knowledge remaining in both genetic kidney diseases and kidney nanomedicine and collective efforts that are needed to bring together stakeholders from diverse expertise and industries to enable the development of the most relevant drug delivery strategies that can make an impact in the clinic.


Subject(s)
COVID-19 , Kidney Diseases , Nanoparticles , Humans , Nanomedicine , Pandemics , Drug Delivery Systems , Kidney , Kidney Diseases/genetics , Kidney Diseases/drug therapy , Drug Carriers/therapeutic use
6.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2238498

ABSTRACT

The oral delivery system is very important and plays a significant role in increasing the solubility of drugs, which eventually will increase their absorption by the digestive system and enhance the drug bioactivity. This study was conducted to synthesize a novel curcumin nano lipid carrier (NLC) and use it as a drug carrier with the help of computational molecular docking to investigate its solubility in different solid and liquid lipids to choose the optimum lipids candidate for the NLCs formulation and avoid the ordinary methods that consume more time, materials, cost, and efforts during laboratory experiments. The antiviral activity of the formed curcumin-NLC against SARS-CoV-2 (COVID-19) was assessed through a molecular docking study of curcumin's affinity towards the host cell receptors. The novel curcumin drug carrier was synthesized as NLC using a hot and high-pressure homogenization method. Twenty different compositions of the drug carrier (curcumin nano lipid) were synthesized and characterized using different physicochemical techniques such as UV-Vis, FTIR, DSC, XRD, particle size, the zeta potential, and AFM. The in vitro and ex vivo studies were also conducted to test the solubility and the permeability of the 20 curcumin-NLC formulations. The NLC as a drug carrier shows an enormous enhancement in the solubility and permeability of the drug.


Subject(s)
COVID-19 , Curcumin , Nanostructures , Humans , Curcumin/chemistry , Lipids/chemistry , Molecular Docking Simulation , SARS-CoV-2 , Drug Carriers/chemistry , Particle Size , Nanostructures/chemistry
7.
Anal Chem ; 95(2): 565-569, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2185429

ABSTRACT

Multifunctional nanoparticle (NP) formulations for medical purposes have already found their way toward envisaged translation. A persistent challenge of those systems is, next to NP size analysis, the compositional analysis of the NPs with the polymer as the matrix component and the encapsulated drug, particularly in a quantitative manner. Herein, we report the formulation of poly(lactic-co-glycolic acid) (PLGA) NPs by nanoprecipitation and the analysis of their integrity and size by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Those NPs feature a variety of encapsulated drugs including the well-known ibuprofen (Ibu) as well as dexamethasone (Dex) and dexamethasone acetate (DexAce), with the latter being of potential interest for clinical treatment of SARS-CoV-2 patients. All those dissolved formulation compositions have been subjected to liquid chromatography on reversed-phase silica monolithic columns, allowing to quantitatively assess amounts of small molecule drug and NP constituting PLGA polymer in a single run. The chromatographically resolved hydrophobicity differences of the drugs correlated with their formulation loading and were clearly separated from the PLGA matrix polymer with high resolution. Our study identifies the viability of reversed-phase monolithic silica in the chromatography of both small drug molecules and particularly pharmapolymers in a repeatable and simultaneous fashion, and can provide a valuable strategy for analysis of diverse precursor polymer systems and drug components in multifunctional drug formulations.


Subject(s)
COVID-19 , Nanoparticles , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , SARS-CoV-2 , Nanoparticles/chemistry , Chromatography, Liquid , Particle Size , Drug Carriers/chemistry
8.
Drug Deliv ; 29(1): 2296-2319, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2187331

ABSTRACT

The emerging cell membrane (CM)-camouflaged poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) (CM@PLGA NPs) have witnessed tremendous developments since coming to the limelight. Donning a novel membrane coat on traditional PLGA carriers enables combining the strengths of PLGA with cell-like behavior, including inherently interacting with the surrounding environment. Thereby, the in vivo defects of PLGA (such as drug leakage and poor specific distribution) can be overcome, its therapeutic potential can be amplified, and additional novel functions beyond drug delivery can be conferred. To elucidate the development and promote the clinical transformation of CM@PLGA NPs, the commonly used anucleate and eukaryotic CMs have been described first. Then, CM engineering strategies, such as genetic and nongenetic engineering methods and hybrid membrane technology, have been discussed. The reviewed CM engineering technologies are expected to enrich the functions of CM@PLGA for diverse therapeutic purposes. Third, this article highlights the therapeutic and diagnostic applications and action mechanisms of PLGA biomimetic systems for cancer, cardiovascular diseases, virus infection, and eye diseases. Finally, future expectations and challenges are spotlighted in the concept of translational medicine.


Subject(s)
Biomimetics , Nanoparticles , Cell Membrane , Drug Carriers
9.
Trends Biotechnol ; 41(3): 281-282, 2023 03.
Article in English | MEDLINE | ID: covidwho-2165900

ABSTRACT

The unprecedented rapid deployment of mRNA vaccines against COVID-19 can be traced back to the early studies of RNA nanocarriers, including the study by Zimmermann et al. which showcased the effectiveness of RNA nanocarriers in vivo. This study, among others, ultimately resulted in Onpattro, the first FDA-approved RNA formulation.


Subject(s)
COVID-19 , Nanoparticles , Humans , COVID-19 Vaccines , Drug Carriers
10.
Molecules ; 27(23)2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2143394

ABSTRACT

Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.


Subject(s)
Acute Lung Injury , COVID-19 , Nanostructures , Zika Virus Infection , Zika Virus , Mice , Animals , Drug Carriers/pharmacokinetics , Lipids , Azithromycin/pharmacology , SARS-CoV-2/metabolism , Particle Size , Acute Lung Injury/drug therapy , Zika Virus/metabolism , Drug Delivery Systems/methods
11.
Chem Pharm Bull (Tokyo) ; 69(12): 1141-1159, 2021.
Article in English | MEDLINE | ID: covidwho-2115208

ABSTRACT

Considerable efforts have been made on the development of lipid nanoparticles (LNPs) for delivering of nucleic acids in LNP-based medicines, including a first-ever short interfering RNA (siRNA) medicine, Onpattro, and the mRNA vaccines against the coronavirus disease 2019 (COVID-19), which have been approved and are currently in use worldwide. The successful rational design of ionizable cationic lipids was a major breakthrough that dramatically increased delivery efficiency in this field. The LNPs would be expected to be useful as a platform technology for the delivery of various therapeutic modalities for genome editing and even for undiscovered therapeutic mechanisms. In this review, the current progress of my research, including the molecular design of pH-sensitive cationic lipids, their applications for various tissues and cell types, and for delivering various macromolecules, including siRNA, antisense oligonucleotide, mRNA, and the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system will be described. Mechanistic studies regarding relationships between the physicochemical properties of LNPs, drug delivery, and biosafety are also summarized. Furthermore, current issues that need to be addressed for next generation drug delivery systems are discussed.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Cations/chemistry , Hydrogen-Ion Concentration , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , SARS-CoV-2/isolation & purification , mRNA Vaccines/chemistry , mRNA Vaccines/metabolism
12.
Adv Drug Deliv Rev ; 189: 114527, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2060293

ABSTRACT

Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.


Subject(s)
Excipients , Lactose , Administration, Inhalation , Aerosols , Chemistry, Pharmaceutical , Drug Carriers , Dry Powder Inhalers , Humans , Particle Size , Powders
13.
J Nanobiotechnology ; 20(1): 395, 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2038770

ABSTRACT

The rapid advancement of nanomedicine and nanoparticle (NP) materials presents novel solutions potentially capable of revolutionizing health care by improving efficacy, bioavailability, drug targeting, and safety. NPs are intriguing when considering medical applications because of their essential and unique qualities, including a significantly higher surface to mass ratio, quantum properties, and the potential to adsorb and transport drugs and other compounds. However, NPs must overcome or navigate several biological barriers of the human body to successfully deliver drugs at precise locations. Engineering the drug carrier biointerface can help overcome the main biological barriers and optimize the drug delivery in a more personalized manner. This review discusses the significant heterogeneous biological delivery barriers and how biointerface engineering can promote drug carriers to prevail over hurdles and navigate in a more personalized manner, thus ushering in the era of Precision Medicine. We also summarize the nanomedicines' current advantages and disadvantages in drug administration, from natural/synthetic sources to clinical applications. Additionally, we explore the innovative NP designs used in both non-personalized and customized applications as well as how they can attain a precise therapeutic strategy.


Subject(s)
Drug Delivery Systems , Nanoparticles , Drug Carriers , Humans , Nanomedicine , Nanoparticles/therapeutic use , Precision Medicine
14.
Drug Deliv ; 29(1): 2868-2882, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2008413

ABSTRACT

Loratadine (LORA), is a topical antihistamine utilized in the treatment of ocular symptoms of COVID-19. The study aimed to develop a Loratadine Nanostructured Lipid Carriers Ocugel (LORA-NLCs Ocugel), enhance its solubility, trans-corneal penetrability, and bioavailability. full-factorial design was established with 24 trials to investigate the impact of several variables upon NLCs properties. LORA-NLCs were fabricated by using hot melt emulsification combined with high-speed stirring and ultrasonication methods. All obtained formulae were assessed in terms of percent of entrapment efficiency (EE%), size of the particle (PS), zeta potential (ZP), as well as in-vitro release. Via using Design Expert® software the optimum formula was selected, characterized using FTIR, Raman spectroscopy, and stability studies. Gel-based of optimized LORA-NLCs was prepared using 4% HPMC k100m which was further evaluated in terms of physicochemical properties, Ex-vivo, and In-vivo studies. The optimized LORA-NLCs, comprising Compritol 888 ATO®, Labrasol®, and Span® 60 showed EE% of 95.78 ± 0.67%, PS of 156.11 ± 0.54 nm, ZP of -40.10 ± 0.55 Mv, and Qh6% of 99.67 ± 1.09%, respectively. Additionally, it illustrated a spherical morphology and compatibility of LORA with other excipients. Consequently, gel-based on optimized LORA-NLCs showed pH (7.11 ± 0.52), drug content (98.62%± 1.31%), viscosity 2736 cp, and Q12% (90.49 ± 1.32%). LORA-NLCs and LORA-NLCs Ocugel exhibited higher ex-vivo trans-corneal penetrability compared with the aqueous drug dispersion. Confocal laser scanning showed valuable penetration of fluoro-labeled optimized formula and LORA-NLCs Ocugel through corneal. The optimized formula was subjected to an ocular irritation test (Draize Test) that showed the absence of any signs of inflammation in rabbits, and histological analysis showed no effect or damage to rabbit eyeballs. Cmax and the AUC0-24 were higher in LORA-NLCs Ocugel compared with pure Lora dispersion-loaded gel The research findings confirmed that NLCs could enhance solubility, trans-corneal penetrability, and the bioavailability of LORA.


Subject(s)
COVID-19 Drug Treatment , Loratadine , Animals , Drug Carriers/chemistry , Lipids/chemistry , Particle Size , Rabbits
15.
Int J Mol Sci ; 22(18)2021 Sep 19.
Article in English | MEDLINE | ID: covidwho-1934141

ABSTRACT

Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood-brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Carriers/chemistry , Drug Delivery Systems , Nanostructures/chemistry , Animals , Biological Transport , Humans
16.
Recent Adv Antiinfect Drug Discov ; 17(1): 34-53, 2022.
Article in English | MEDLINE | ID: covidwho-1862438

ABSTRACT

BACKGROUND: The increase in bacterial resistance against antibiotics is thought to be another type of pandemic after COVID-19. Emergency treatment based on antibiotics is a major influence in increasing this resistance. Bacteria, such as Klebsiella pneumoniae, are the most affected by the indiscriminate use of antibiotics, since they are resistant to most antibiotics currently available on the market. OBJECTIVE: This review aimed to evaluate patents of new drugs and formulations, for the treatment of infections caused by Klebsiella pneumoniae. METHODS: The present patent review was carried out through a specialized search database Espacenet. The selection was based on the criteria of patents published from 2010 to May 2021, in any language, and containing the keywords in title or abstract. Also, a research was performed on the PubMed database, using the inclusion criteria. RESULTS: Twenty-two patents were selected for the analysis according to the aim of the study. The advance of new patents has been mostly observed in the World Intellectual Property Organization, China, and United States. The results showed that the main approach was the drug association, followed by drug carriers, new isolated products, and vaccines. CONCLUSION: It has been observed that few studies use new drug alternatives for the treatment, probably due to the higher cost of the development and lack of investments. The effectiveness and safety of these therapies depend on the acceptance, the correct prescription, and rational use of medicines. Therefore, this review can further develop new treatments as alternatives against Klebsiella pneumoniae and pneumonia caused by it.


Subject(s)
COVID-19 Drug Treatment , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Carriers , Drug Resistance, Microbial , Humans , Klebsiella pneumoniae
17.
ACS Nano ; 16(5): 7168-7196, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1805555

ABSTRACT

There is a growing interest in the development of lipid-based nanocarriers for multiple purposes, including the recent increase of these nanocarriers as vaccine components during the COVID-19 pandemic. The number of studies that involve the surface modification of nanocarriers to improve their performance (increase the delivery of a therapeutic to its target site with less off-site accumulation) is enormous. The present review aims to provide an overview of various methods associated with lipid nanoparticle grafting, including techniques used to separate grafted nanoparticles from unbound ligands or to characterize grafted nanoparticles. We also provide a critical perspective on the usefulness and true impact of these modifications on overcoming different biological barriers, with our prediction on what to expect in the near future in this field.


Subject(s)
COVID-19 , Nanoparticles , Humans , Drug Carriers , Pandemics , Lipids , Drug Delivery Systems
18.
Int J Pharm ; 620: 121757, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1796680

ABSTRACT

Pulmonary diseases are currently one of the major threats of human health, especially considering the recent COVID-19 pandemic. However, the current treatments are facing the challenges like insufficient local drug concentrations, the fast lung clearance and risks to induce unexpected inflammation. Cell-derived membrane biomimetic nanocarriers are recently emerged delivery strategy, showing advantages of long circulation time, excellent biocompatibility and immune escape ability. In this review, applications of using cell-derived membrane biomimetic nanocarriers from diverse cell sources for the targeted therapy of pulmonary disease were summarized. In addition, improvements of the cell-derived membrane biomimetic nanocarriers for augmented therapeutic ability against different kinds of pulmonary diseases were introduced. This review is expected to provide a general guideline for the potential applications of cell-derived membrane biomimetic nanocarriers to treat pulmonary diseases.


Subject(s)
Biomimetic Materials , COVID-19 Drug Treatment , Nanoparticles , Biomimetics , Cell Membrane/metabolism , Drug Carriers/metabolism , Drug Delivery Systems , Humans , Pandemics
19.
IET Nanobiotechnol ; 16(3): 85-91, 2022 May.
Article in English | MEDLINE | ID: covidwho-1758388

ABSTRACT

Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe2 O3 nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 µg.ml-1 concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.


Subject(s)
Nanoparticles , Silicon Dioxide , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Humans , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry
20.
Adv Drug Deliv Rev ; 184: 114180, 2022 05.
Article in English | MEDLINE | ID: covidwho-1729476

ABSTRACT

Acute inflammation is a common dangerous component of pathogenesis of many prevalent conditions with high morbidity and mortality including sepsis, thrombosis, acute respiratory distress syndrome (ARDS), COVID-19, myocardial and cerebral ischemia-reperfusion, infection, and trauma. Inflammatory changes of the vasculature and blood mediate the course and outcome of the pathology in the tissue site of insult, remote organs and systemically. Endothelial cells lining the luminal surface of the vasculature play the key regulatory functions in the body, distinct under normal vs. pathological conditions. In theory, pharmacological interventions in the endothelial cells might enable therapeutic correction of the overzealous damaging pro-inflammatory and pro-thrombotic changes in the vasculature. However, current agents and drug delivery systems (DDS) have inadequate pharmacokinetics and lack the spatiotemporal precision of vascular delivery in the context of acute inflammation. To attain this level of precision, many groups design DDS targeted to specific endothelial surface determinants. These DDS are able to provide specificity for desired tissues, organs, cells, and sub-cellular compartments needed for a particular intervention. We provide a brief overview of endothelial determinants, design of DDS targeted to these molecules, their performance in experimental models with focus on animal studies and appraisal of emerging new approaches. Particular attention is paid to challenges and perspectives of targeted therapeutics and nanomedicine for advanced management of acute inflammation.


Subject(s)
COVID-19 Drug Treatment , Thrombosis , Animals , Drug Carriers/therapeutic use , Endothelial Cells , Endothelium, Vascular , Humans , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL